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A SIMPLE PROOF AID SOW, EXTENSIONS

OF THE SAMPLING THEOREM

by

Emanuel Parzen

Abstract.

The sampling theorem states essentially that if the frequency spectrum,

or Fourier transform, g(w) of a time function f(t) vanishes for w outside

some interval I , then f(t) is completely determined by its values at cer-

tain discrete sampling points, whose density is proportional to the length of

the interval I . This note givcs a method of proof of the sampling theorem,

both for the case where the interval I is centered at the origin and where

it is not, which is somewhat simpler than the previously given proofs, and at

the same time is more rigorous, and yields several useful generalizations to

functions of several variables and random functions.

1. Introduction.

.The sampling theorem, as first stated by Shannon [1], asserts essentially

that if the frequency spe-t.i'umx or Fourier transform, g(w) of a time function

f(t) vanishes for w outside some interval I , then f(t) is completely

determined by its valutL - certain discrete sampling points, whose density is

proportional to the length of the interval. The usual proof of the sampling

theorem is based on expanding the Fourier transform g(w) in a Fourier series.

However, it appears that the result can be obtained more simply by expanding

the kernel ei(t in a Fourier series, as a function of w in I , which [
amounts to proving the samr3ing theorem for the functions of t given by

iWt . with w held fixed at some point in I . In this note, we use this
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method to prove the sampling theorem. We also show how the method may be used

to give simple proofs of various extensions of the sampling theorem, among

them those due to Goldman [2], Kohlenberg [3], and Woodward and Davies [4].

The theorems we prove are the following.

Theorem I: Suppose that the function f(t) , defined for all real values

of t , may be represented as a Fourier integral, for some positive constant W ,

21cW iwt
(1.1) f(t) = e g(w) dw

d-2 •W

where the function g(w) may contain 5 function terms, but not at w= + 2,tW

Then, for every t

0o

(1.2) f (t) f(•-L) s(t ••
2W--2W

where

(1.3) s(t) = eiwt dw

(1.4) sin 2nWt
21rWt

Theorem II: Suppose that f(t 1 ... ,tK) , defined as a function of K

variables, may be represented as a Fourier integral, for positive WI, .... ,WK *

K\
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(125).W 21WK dtl)* i(w•t l +.. .+WtK)
1t t2•.'W J-2AW K 1 K g(wl,'" "'K)

where g(wl,... ,WK) may contain 8 function terms, but'not at the 2K points

of the form (+ 27rWI, ',+ 27rW) Then

(1.6) f(tl,...,tK) = f1...1)s(t1K)...s(t
ml, ... ,mK=1-K

Theorem III: Let f(t) be a stationary random function (as defined by

Doob [51) whose covariance (or autocorrelation) function R(T) = Ef(t) f(t+T)

may be written,

(1.7) R(T) = j e G(w) d-2

where G(w) is the power spectrum of the function, which may contain 5

function terms, but not at w = + 2gW . Then

0o

(x.8) f(t) f 7 f(-) s(t -
m-- - 0

where the infinite series in (18) converges stochastically (in the sense of

convergence in mean square).

Theorem IV: Suppose that f(t) may be represented as a Fourier integral,

for positive W and W0
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2n(Wo+ iWt o-2 W
(1.9) f(t) = e g(W) + e g(w) dw2nW 0 _-21r(Wo+ W)

where the function g(w) iiay possess b function terms, but not at

w = + 2W 0 or w = + 27t(W + W) or w = + 2v(rW - W ) where r is the

integer such that

W Wow(1.10) 2 -2 <_ r < 2 '+ 1

Let

1 2it(rW + W)

s(1) 0 dr[cos wt + sin wt cot vrWk]
(1.11) 0

1 /2•(W+ W)

+ 1 T--• 0 +WW) di[cos wt + sin wt cot 3(r + 1)Wk]
2 c j2iT(rW-W )

where k is a constant satisfying the condition that rWk and (r + 1)Wk

are not equal tc any of the integers 0, + 1,... Then, for every t

OD

(1.12) f(t) = / m) + f(f + k) s(f. k - t)
m=-oD

if Wo/W is an integer, then with k = 1/2W , (1.12) reduces to (1.4).

It will be clear from-what follows that Theorems II and III can be

extended in the same way that Theorem I is extended by Thcorem IV.

2. Proofs of Theorems !-III.

We start with the following basic fact from the theory of Fourier

series. For any real number t , and w such that wj < 2,tW
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(2.1) ei~ e s(t -M

m=-00

The infinite series in (2.1) converges in general for 1(o < 21W , but not

for w = + 2yW . However, the consecutive sums

iMW 2W

ImIt = M

are, for fixed t , uniformly bounded for Ijw < 2AW ; that is, there is a

constant K such that ISM(Wt) j< K for M = 0,1,2, ... and Iwi < 2nW

A not quite -igorous way of verifying (2.1) is as follows. The right

hand side of (2.1) may be written

/ o27W 00m

(2.2) d e2t d- 2t e

J-21cW =C

It may be verified that

(2.3) 7--eim 2Tc b_ (a + 2gn)

m=-co n=-oD

and, for any function f(x)

(2.4) J f(x) 6(x -- ) dx = c f(a)
c

if the point a lies in the interval of integration I ; otherwise the

integral in (2.4) is zero. Now, for ILw < 27tW , the only value of n such

that [W + 4itnwi < 2AW is n = 0 . Consequently, in view of (2.3) and (2.4),
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it is seen that the value of (2.2) is e it, for IJI< 21cW , which verifies

(1.(2.1).

Next, to prove Theorems I and II, merely replace eiýt in (1.1) and

(1.5) by the infinite series of (2.1); that the order of integration and summa-

tion may be interchanged follows rigorously by the theory of Lebesgue integra-

tion.

Next, to prove Theorem III, we first note the fact that, from (1.7) it

follows that f(t) may be represented as a stochastic integral as follows:

(2.6) f(t) f2rW eiWt dZ(w)

J-21W

By the theory of stochastic integrals, (1.8) follows from (2.6) if one shows

that

2,'W iwt 2
lim e - M•W,t) G(w) dw = 0

M-4co J-21TW

which follows from the facts stated at the beginning of this section.

3. Proof of Theorem IV.

To prove (1.12) we begin by conjecturing that for w such that

2 TW < 1Jw< 2g(W + W) , elWt may be written in the form

0O m 00
(3.1) e = _ e S,(t + m > e + s(t )

W s j t - •) + , 2  t -

M=-nn

for some constant k and functions s (t) and s2(t) which are of the



-7-

form, for i = 1,2,

(3.2) s.(t) f e itw SI(w) dw

where the region of integration I consists of the intervals (21Wo,2T(W 0 + W))

and (-27t(Wo+ W), -2iTW) In view of (3.2), the right hand side of (3.1)

may be written

(3.3) ] Id,,, S1 e im e W

J m
ikt ik(w-A.) i- i(w- &

+ d xS2 () e2() e /___ e
m I,

We next evaluate (3.3) by means of (2.3) and (2.4).

It is readily verified that, for w in I, w + 27nW lies in I only for

n = 0 , and for one other value of n , which we denote by N(w) , whose

values are given in Table A in terms of the integer r given by (1.10).

Table A

For w in the interval N(w) = w + 2gN(w)W lies in the
interval

J 2 0W <w < 21(rW-W)

-Jl :-2iT(rW-Wo) < w < -21cW r J0 0u

J2 : 21t(rW-W) < w < 2iT(W + W) -(r+l) 2

-J2 :-27m(W + W) < w < -2n(rW-Wo) r+l
2 0 0 _ _ _
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Then, for w in I, the value of (3.3) is given by

(3.4) 27tW ei~t [S 1 (W) + S2 (w)] + 21rW eit() + 2 IN(w)W)

[1(w+ 2iTN(w)W) + e-iTNwWkS2( 2iTN(W)W)]

Now, let S1 () and S 2() be defined so that they vanish for w

outside I, and for w = + 21c(rW W ) 0 and for other values of w in I

satisfy the relations

(3.5) 2gW Si(c) M 1 - 2gW S2 (w), 2itW S2 (w) = [1-ei2T(w)Wk1-1

where we now choose k so that rWk and (r+l)Wk are not equal to any

of the integers 0, + 1, + 2, .... In view of Table A it may be verified

that the following relations hold for w in I, where an asterisk denotes

a complex conjugate:

N(w) = - N(-w), S1(W) = S2(-w)

S2 (w + 2)N(w)W) = S*(w) = S2(-W),

S (w + 2mTN(W)W) = S*(w) = s

S1(w + 21tN(w)W) + e-i2•TN(w)Wk $2(w + 2gN(w)W)

[S 1(W) + ei2gN(w)Wk S2 (w)]*

2iTW(S (W) + s2 (w)) = 1
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In view of these relations, the value of (3.4) is ei~t i for i in

I, except perhaps for w = + 2ic(rW-W) , and (3.1) holds with s (t) and

s 2 (t) given by (3.2) and S 1 (w) and S2(w) given by (3.5).

We now write (3.1) in a more convenient form. Since Sl(W) = S 2 (-W)

it follows that s 1 (t) = s 2 (-t) . Define s(t) = sl(t) . Then, since

S u)= Sl(-w) ,

st e2 (W°+ w) [eiSt

(3.6) s(t) e iwt SI(w) dw = 2 Real (w)] dw
IJ+21tW 0IO

Now

iwt 1 rcos Uwt - cos (wt + 23tN(w)Wk)j(3.7) 2 Real [e S - 2jrW 1 - cos 2iTN(w)Wk

= 1 cos wt + sin wt cot irN(w)Wk

iwt
Thus (1.12) has been established for the complex exponentials e for
2•TW 0< j < 2T(W + W) , with the possible exception of w = + 2v(rW-W )

To establish (1.12) for any function f(t) satisfying (1.9), merely re-

place eiwt in (1.9) by the infinite series representing it.
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- .• A Mathematical Resta .,rv of Hypotheses in

"I ,A SIMPLE PROOF AND SOE EXTT SIO:S

OF THE SAMlPLINGTHDR7'

bJy

Emanuel Parzen

This report was written in - terminology which would presumably be

most readable to communication engineers. For the reader interested

in mathematical precision, the following restatements of hy'potheses

should be noted.

In Theorem I, for (1,1) redd

2 Tr , i ,- t
rl I) f(tU) -- ' ' dý', )

"where V(, ) is a function of bounded variation continuous at • --2 .

In Theorem II, for (1.5) read

(1.5) f~t!, -,tK J2 T: K (itK "w"l"tK
2 7eI -21r;;_

"-here V( -.... , •,) is a function of bounded variation which assigns

measure zero to the set I±2" "W for some:

In Theorer:: Ill, for (1.7) read

(1,7) R(T) - e dF(ci
-2 it

I Technical Report No. 7, Department of Statistics, Stanford
TjUniversity,, Stanford, California. Prepared under Office o-4ai
H-Research Contract Nonr-225(21).
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where the spectral distribution function F(' ;} is mrnaotoiLa non-decreasing

and continuous at -*2irl.

In Theorem IV, for (1.9) read

(1-9) f(t) 0. e dV(w) 0 e t' dVm)
S2 •J'TO,0J- 2 -r (1V*70

where V(c ) is a function of bounded variation continiouu. at

S= *2 -W, W- ±2-1 (1o4,TJ), and -- ±2_-2T (rVT - W ), where r is ,ofirir ,•

0 (1

by(1.10).


